Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context.High-precision pulsar timing is highly dependent on the precise and accurate modelling of any effects that can potentially impact the data. In particular, effects that contain stochastic elements contribute to some level of corruption and complexity in the analysis of pulsar-timing data. It has been shown that commonly used solar wind models do not accurately account for variability in the amplitude of the solar wind on both short and long timescales. Aims.In this study, we test and validate a new, cutting-edge solar wind modelling method included in theenterprisesoftware suite (widely used for pulsar noise analysis) through extended simulations. We use it to investigate temporal variability in LOFAR data. Our model testing scheme in itself provides an invaluable asset for pulsar timing array (PTA) experiments. Since, improperly accounting for the solar wind signature in pulsar data can induce false-positive signals, it is of fundamental importance to include in any such investigations. Methods.We employed a Bayesian approach utilising a continuously varying Gaussian process to model the solar wind. It uses a spherical approximation that modulates the electron density. This method, which we refer to as a solar wind Gaussian process (SWGP), has been integrated into existing noise analysis software, specificallyenterprise. Our Validation of this model was performed through simulations. We then conduct noise analysis on eight pulsars from the LOFAR dataset, with most pulsars having a time span of ∼11 years encompassing one full solar activity cycle. Furthermore, we derived the electron densities from the dispersion measure values obtained by the SWGP model. Results.Our analysis reveals a strong correlation between the electron density at 1 AU and the ecliptic latitude (ELAT) of the pulsar. Pulsars with |ELAT|< 3° exhibit significantly higher average electron densities. Furthermore, we observed distinct temporal patterns in the electron densities in different pulsars. In particular, pulsars within |ELAT|< 3° exhibit similar temporal variations, while the electron densities of those outside this range correlate with the solar activity cycle. Notably, some pulsars exhibit sensitivity to the solar wind up to 45° away from the Sun in LOFAR data. Conclusions.The continuous variability in electron density offered in this model represents a substantial improvement over previous models, that assume a single value for piece-wise bins of time. This advancement holds promise for solar wind modelling in future International Pulsar Timing Array (IPTA) data combinations.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract While observations of many high-precision radio pulsars of order ≲1 μ s across the sky are needed for the detection and characterization of a stochastic background of low-frequency gravitational waves (GWs), sensitivity to single sources of GWs requires even higher timing precision. The Argentine Institute of Radio Astronomy (IAR; Instituto Argentino de Radioastronomía) has begun observations of the brightest known millisecond pulsar, J0437−4715. Even though the two antennas are smaller than other single-dish telescopes previously used for pulsar timing array (PTA) science, the IAR’s capability to monitor this pulsar daily, coupled with the pulsar’s brightness, allows for high-precision measurements of pulse-arrival time. While upgrades of the facility are currently underway, we show that modest improvements beyond current plans will provide IAR with unparalleled sensitivity to this pulsar. The most stringent upper limits on single GW sources come from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). Observations of PSR J0437−4715 will provide a significant sensitivity increase in NANOGrav’s “blind spot” in the sky where fewer pulsars are currently being observed. With state-of-the-art instrumentation installed, we estimate the array’s sensitivity will improve by a factor of ≈2–4 over 10 yr for 20% of the sky with the inclusion of this pulsar, as compared to a static version of the PTA used in NANOGrav’s most recent limits. More modest instrumentation results in factors of ≈1.4–3. We identify four other candidate pulsars as suitable for inclusion in PTA efforts. International PTA efforts will also benefit from inclusion of these data, given the potential achievable sensitivity.more » « less
-
ABSTRACT The International Pulsar Timing Array 2nd data release is the combination of data sets from worldwide collaborations. In this study, we search for continuous waves: gravitational wave signals produced by individual supermassive black hole binaries in the local universe. We consider binaries on circular orbits and neglect the evolution of orbital frequency over the observational span. We find no evidence for such signals and set sky averaged 95 per cent upper limits on their amplitude h95. The most sensitive frequency is 10 nHz with h95 = 9.1 × 10−15. We achieved the best upper limit to date at low and high frequencies of the PTA band thanks to improved effective cadence of observations. In our analysis, we have taken into account the recently discovered common red noise process, which has an impact at low frequencies. We also find that the peculiar noise features present in some pulsars data must be taken into account to reduce the false alarm. We show that using custom noise models is essential in searching for continuous gravitational wave signals and setting the upper limit.more » « less
-
Abstract The Australian, Chinese, European, Indian, and North American pulsar timing array (PTA) collaborations recently reported, at varying levels, evidence for the presence of a nanohertz gravitational-wave background (GWB). Given that each PTA made different choices in modeling their data, we perform a comparison of the GWB and individual pulsar noise parameters across the results reported from the PTAs that constitute the International Pulsar Timing Array (IPTA). We show that despite making different modeling choices, there is no significant difference in the GWB parameters that are measured by the different PTAs, agreeing within 1σ. The pulsar noise parameters are also consistent between different PTAs for the majority of the pulsars included in these analyses. We bridge the differences in modeling choices by adopting a standardized noise model for all pulsars and PTAs, finding that under this model there is a reduction in the tension in the pulsar noise parameters. As part of this reanalysis, we “extended” each PTA’s data set by adding extra pulsars that were not timed by that PTA. Under these extensions, we find better constraints on the GWB amplitude and a higher signal-to-noise ratio for the Hellings–Downs correlations. These extensions serve as a prelude to the benefits offered by a full combination of data across all pulsars in the IPTA, i.e., the IPTA’s Data Release 3, which will involve not just adding in additional pulsars but also including data from all three PTAs where any given pulsar is timed by more than a single PTA.more » « less
An official website of the United States government
